PARIPEX - INDIAN JOURNAL OF RESEARCH | Volume - 13 | Issue - 09 | September - 2024 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

ORIGINAL RESEARCH PAPER

Machine Learning

INVESTIGATING THE EFFECTIVENESS OF

KEY WORDS: Machine
DIFFERENT MACHINE LEARNING Learning Algorithms,
ALGORITHMS TO PREDICT THE PRICES OF Hyperparameters, Stocks,
STOCKS Features
Ruchit Karnik Indian SchoolWadiKabir [Cambridge](Student)

ABSTRACT

insights about stock prices for investors

The fluctuating nature of stock prices creates a sense of uncertainty and uneasiness for investors. It is extremely difficult
to predict stock prices as price movements are a result of the mass psychology of buyers and sellers. To address this
issue, this study aims to identify the best machine learning model to accurately predict stock prices of 5 fortune 500
companies which include Amazon, Meta, Tesla, Apple and Nvidia. The machine learning models used are Linear
regression, Decision trees, Random forests, XGboost and K-Nearest Neighbours. Ridge regression was also used in the
beginning, but was discontinued due to very identical results to linear regression in order to save computing power and
time. All models performed perfectly well and the performance improved significantly using hyperparameters through
the grid search feature. Comparing all models, the Random forests model performed the best among all. The
performance of the models can be improved by using a dataset with more features and increasing the number of
hyperparameters for all models. Moreover, the random forest model can be extended into an application that provides

INTRODUCTION

Since the beginning of the stock market, predicting stock
prices has been of great interest to economists, investors and
traders. Early methods to predict stock prices include
fundamental analysis and technical analysis amongst others.
Fundamental analysis consists of analysing a company's
financial statements, ratios and economic indicators, while
technical analysis comprises of examining chart patterns.
Although these methods have seen some success over the
years, they are known to be extremely unreliable and
misleading due to oversimplifying the factors that determine
stock prices. (Remesh, n.d.) To overcome such limitations of
traditional prediction methods, algorithmic trading was
conceived. This involves the use of computer programs to
analyse historic values of features that influence stock prices
to foresee them. In fact, this research involves the use of basic
algorithmic trading algorithms to compare the effectiveness
of different algorithms.

DATASETS

The datasets were obtained for the following companies:
Amazon, Apple, Tesla, Meta and Nvidia. Each dataset includes
information about the stock for each day for the last 5 years.
The information included for each day is the date, the open
price, the high price, the low price, the close price, the
adjusted close price, and the volume. All datasets were
obtained from Yahoo finance due to its credibility and the
datasets were all stored as CSV files. In order to make the
predictions more accurate some common features were
derived from the information available. The raw Amazon and
Apple datasets downloaded from Yahoo finance are shown as
an example below.

Date Open Hagh Low Close Ad) Close Volume

13/06/2019 93336 S41545 93111 93.515 931.515 55916000
14/06/2019 93.2 918 69295 934815 934835 50024000
17/06/2019 G825 47845 937725 943015 94.3015 52686000
18/06/2019 950675 96,0835 94.9895 950685 95.0685 77914000
19/06/2019 95392 95979 946235 954395 954395 57906000
20/06/2019 966665 96.76 95.29 959095 95.9095 64344000
21/06/2019 95805 96.297% 95179 95565 95565 78472000
J4/06/2019 95631 95843 95065 95695 05695 45660000
15/06/2019 95592 958195 93621 939135 939135 60246000
26/06/2019 94.624 9519 94366 948915 94,8915 4BB3B000
27/06/2019 9.1 99562 94902 95.214 95.214 42834000
I8/06/2019 95455 95647 94,2 46815 94,6815 60748000
01/07/2019 96149 06401 05733 06,1005 96,1005 63842000
02/07/2019 95969 O6.7395 953315 96.7155 96.7155 52918000

Figure 1:Screenshot of Raw Amazon CSV File
|

Date Open HMigh Low Close Adj Close Volume

17/06/ 2019 48.225 4874 480425 4B4TYS 4684412 58676400
18/06/2019 490125 S00725 488025 496115 47.94582 106204000
19/06/ 2019 49,92 4997 493275 A&%46TS A47.BOS7 BA496R00
20/06/2019 S0.0925 S0.1525 49.5075 49.865 48.18985 B6056000
21/06/2019 49.7 S0.2125% 495375 49,695 48.02556 191202400
24/06/2019 49.635 SO.04 495425 49.645 4797724 TIER1600
25/06/2019 496075 49815 488225 48805 47.25001 B4JA1200
26/06/2019 49.442% S0.2475 49.337% 49.9% 48.27199 104270000
27/06/2019 SDO725 S0.3925 49.8925 49.93% 4RINS Bi1598800
J8/06/2019 4967 49875 49.262% 4948 4781777 124442400
0L/O7/2019 S0.7925 51.1225 501625 503875 43.65479 109012000
02/07/2019 50.352% SO.782% 50.34 S0.682% 4897989 &7TA0800
03/or/09 S0.82 51.11 506725 51.1025% 49.38577 4 5448000
05/07/ 2019 SOBITS $1.27 SO.7YS 510575 45 34209 HO06 2000

Figure 2:Screenshot of raw Apple CSV file

METHODOLOGY

Features

The datasets were all downloaded as csv files and added to a
common PyCharm project. The following features were used
to train the models: price change, difference between high
and low price, Relative Strength Index (RSI) and volume. Only
volume was used from the raw data, rest of the features were
derived from the data. The price change was derived by
subtracting the closing price of one day from the previous day.
The difference between the high and low price was derived
by subtracting the high price from the low price. Deriving the
RSI had a complex procedure (howtoexcel, n.d.). The RSI was
calculated over a 14-day period. A columnwas made for each
the gains and the losses in price using the price change
column. If the there was a price gain, it was included in the
gains column and 0 was included in the losses column, while if
there was a price loss, the absolute value of the loss was
included in the losses column and 0 was included in the gains.
The below figure shows an example of this for Amazon stock.

Date price change Gains Losses

14/06/2019 -0.031501 0 0.031501
17/06/2019 0.818 0.818 0
18/06/2019 0.766999 0.766999 0
19/06/2019 0.371002 0.371002 0
20/06/2019 0.470001 0.470001 0
21/06/2019 -0.344498 0 0.344498
24/06/2019 0.129998 0.129998 0
25/06/2019 -1.781502 0 1.781502

| 89 |2

{ www.worldwidejournals.com |

PARIPEX - INDIAN JOURNAL OF RESEARCH | Volume - 13 | Issue - 09 |September - 2024 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

26/06/2019 0.978004 0.978004 0
27/06/2019 0.322495 0.322495 0
28/06/2019 -0.532494 0 0.532494

Figure 3: Example Of The Gains And Losses In The
Amazon Stock

Furthermore, average gain and average loss columns were
made using data from the gains and losses columns. The
average gain column includes the average of 14 days of gains,
for example the 14" day includes the average of the gains from
the 1" day to the 14" day and the 15" day includes the average
of the gains from the 2™ day to the 14" day. The same logic
applies to the average loss column. An example of this is
shown below from the Amazon stock file

Date price change Gans Losses AvE ganr Avg loss
r61497 0 0.35067 0.537643

0 0349495 0.3125%621 0562607

) L.357506 0.302364 0.641393

09/10/2019).339624 0.641393

10/10/2019 1.315365 0.549929

11/10/2019) 0.334482 0518286

14/10/2019) 0.326698 0.36225

0/ 2019 0 0413898 16225

2019 420226). 2605

0/2019 0.5025 0.426103 0.209108

0 1.498407 0.395667 0.316143

/2019 1

IR L 1
4019

1

i

17/%

1]
1

i

]

= . N
:

1.407493 (0.46794 0.315215

22/10/ 2019 0 996498 0 0996498 0.4345%16 0.3061I21

Figure 4: Example Of Average Gain And Average Loss In
The Amazon Stock

Next, using the average gain and average loss, the relative
strength was calculated. The relative strength was calculated
by using the formula 'Average Gain/ Average Loss'. An
example of this is shown is shown below.The RS column refers
to the Relative strength.

Date price change Gair Losses AvE R

15067 537643 0652237

21.10/2019 1.407493 1.40749}

1210/2019 i G0H498 0.996498 0.434%16 06121 1.418498

Figure 5: Example Of Relative Strength From Amazon
Stock Data

Finally, the relative strength index is calculated using the
following formula:
RSI=100-(100/ (1 +RS)).

Figure 6:Screenshot Of All Derived Features

- 60 |

Machine Learning Models And Code

The following models were used: Linear Regression, Decision
Tree, Random Forest, XGBoost and K-nearest Neighbour
(KNN). The details of each model are discussed below where
necessary along with some common code.

Common Code

Figure I:Screenshot Of Common Code

The above code first imports Pandas, next all the necessary
machine learning models. It also imports the train test split
feature (3) in line 9. This feature splits the datasets into
training and testing sets. This means that some part of the
dataset will be used to train the models, and the remaining
partwill be used for testing the accuracy of the model. Moving
on, three types of evaluating metrics are imported: the mean
squared error (4), the mean absolute error (5) and the mean
absolute percentage error (6).These three metrics are used in
order to obtain a comprehensive evaluation of each model.
Each metric captures different error characteristics: the mean
squared error is sensitive to outliers and hence highlights
larger errors; the mean absolute error offers a
straightforward estimate of the average prediction error,
regardless of outliers. Finally, the mean absolute percentage
error allows the error to be interpretable as a percentage,
allowing it to be easily understood. Moving on, GridSearchCV
(7) was imported to select the best hyperparameters and so
improve the performance of all models. Lines 17 and 18 tell
the program which stock to analyse, and line 19 sets the close
price as a target for prediction. Line 20 selects the features to
use as the basis for prediction. Line 24 tells the program how
much data should be training data and testing data. I have
selected 20% of the data to be testing data and 80% as
training data, as generally the majority of the data must be
training data for the model to get an accurate understanding
of the data. The random state feature is used here and
throughout the code in order to make the results replicable.

Figure 8:Linear Regression Code

This is the standard code for fitting a dataset with linear
regression (geeksforgeeks,2024) and making a prediction.

Other Models

All the following models use the grid search feature in order
to find the best hyperparameters from the parameter grid.
The rest of the code for each model is the standard code to
utilise those models.

{ www.worldwidejournals.com F

PARIPEX - INDIAN JOURNAL OF RESEARCH | Volume - 13 | Issue - 09 |September - 2024 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

(geeksforgeeks,2023)
Figure 9:DecisionTree Code

(Geeksforgeeks,2023)
Figure 10:Random Forest Code

(educative,n.d.)
Figure 11: GBoost Code

(Korstanje,n.d.)
Figure 12: K Nearest Neighbour Code

Grid Search Code

Figure 13: Grid Search code

Firstly, in the above code, the parameters of GridSearchCV
are set.The estimator is set to the model that is currently being
used. The parameter grid is set to the parameter grid used
and 'cv' is set to 5 because it is considered to be a balance
between computational efficiency and quality evaluation. N
jobsis setto-1 to allow parallel processing and using all cores
of the computer, leading to faster processing. Negative mean
absolute error is used as the scoring parameter so that
GridSearchCV selects hyperparameters that aim to reduce
the mean absolute error, improving prediction accuracy. The
code fromline 68 to 70 is the standard code for GridSearchCV.

Printing Results

Figure 14:Printing Results Code

The code in line 72 prints the best parameters according to
GridSearchCV for each model in use. The rest of the code
|

from line 73 to 74 prints the results of the model's evaluation
metrics.

Figure 15:Example Results

The above figure shows the result for predicting the Apple
stock using the Decision tree model. The first line outputs the
best hyperparameters and the next three lines output the
evaluation metrics for this model.

Best Hyperparameters For Each Model

Hyperparameters were available for all used models other
than Linear regression. The hyperparameter settings for each
model shown below for each company's dataset shows the
parameters that lead to best the result according to the
negative absolute error metric.

Table -1DecisionTree Hyperparameters

Max Max leaf |Min samples |Min samples
depth |nodes leaf split
Amazon |7 10 50 2
Apple 7 30 1 2
Meta 15 None 2 50
Tesla 10 None 5 2
Nvidia 7 None 5 2
Table-2 Random Forest Hyperparameters
Max Max leaf |Min samples|Min samples
depth nodes leaf split
Amazon |10 1 10 300
Apple None 1 2 200
Meta 10 2 10 500
Tesla 10 2 2 500
Nvidia 10 1 2 500
Table-3 XGboost Hyperparameters
Gamma |Learning rate | Max depth |N estimators
Amazon |0 0.01 5 200
Apple 0.2 0.1 None 500
Meta 0.2 0.1 5 1000
Tesla 0.1 0.1 5 50
Nvidia |0 0.1 5 500
Table-4 K-nearest Neighbour
Leaf size |N neighbours [P |Weights
Amazon 10 20 1 |uniform
Apple 10 100 1 |uniform
Meta 10 100 1 |uniform
Tesla 10 100 1 |uniform
Nvidia 10 100 1 |uniform
RESULTS

The best model for each metric for is bolded. The following
are the results of this investigation:

Table -5 Amazon Results

Metrcs Amazon

Linear regresson Decion tree Random Forest XGBoost KNN
MAE 24.422% 22 4746 21.2326 22.158]1 26.0148
MSE 7741687 742 0268 664.1475 E6492 BE967
MAPE 19.06128 17.4435 16.4488 17.2055 209471
Table - 6 Apple Results
Metrics Apple

Limear regression Decmon tree Random Forest NGBoost KNN
AT 21.2004 14.0539 12.3000 124381 21099
MSE 742 3418 402 7148 2439047 151178 1066 38
MAPE) 809 116128 9. 9408 100324 259048
Table -6 Meta Results
Metrics Meta

Linear regressson Decision tree Randomn Forest XGBoost KNN
MAL 55.2351 86.7314 MNE791 19925 67.9091
wSE 4684 ¥ 7R 1971 8018 JRSA 5661 21815.52 728942
MAPE 215128 196783 16,9458 170958 293374

{ www.worldwidejournals.com |

| 61 |

PARIPEX - INDIAN JOURNAL OF RESEARCH | Volume - 13 | Issue - 09 |September - 2024 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex
Table-1TeslaResults

i\klnn Tesla

Unear regresson Decision tree Random Forest XGBoost KNN
|MAE 43,3039 27.1488 225718 226034 62.4008
|MISE 29916772 1423 4245 916114 8754 654118
|MaPE 75.2704 15.8911 13.2676 14.3861 134.029
Table -8 Nvidia Results
Metrncs Nowctia

Linear regression Decmion tree Random Forest XGBoost KNN
MAE 1.2571 SE787 $.237 S.2401 1570
ASE 113,501 B9 7645 618089 61.8701 527488
MAPE 40.1879 219811 21.841 211061 106.067

Overall, the random forest model worked best for all
companies, with the exception being XGboost in the case of
Meta, Tesla and Nvidia for the Mean squared error metric.

CONCLUSION

It can be concluded that the random forest model works best
among the models selected for these companies. However,
currently the model lacks accuracy due to the small number
of features used. This research can be extended to include
many more features such as the number of X (formerly twitter)
mentions, positive and negative news mentions, general
economic indicators amongst others. This, along with
increasing the hyperparameters tested will drastically
improve the accuracy of the model and make it much more
worthwhile for investors to use the model as a reference. For
the extension of this research, the random forest model is
highly suitable as it emerged as the best model amongst
models tested in this research.

REFERENCES

1. educative. (n.d.). Regression using XGBoost in Python. Retrieved June 22,
2024, from educative.io: https://www.educative.io/answers/regression-
using-xgboost-in-python

2. geeksforgeeks. (2023, January 11). Python | Decision Tree Regression using
sklearn. Retrieved June 20, 2024, from geeksforgeeks: https://www.
geeksforgeeks.org/python-decision-tree-regression-using-sklearn/

3. Geeksforgeeks. (2023, December 16). Random Forest Regression in Python.
Retrieved June 20, 2024, from geeksforgeeks.org: https://www.
geeksforgeeks.org/random-forest-regression-in-python/

4. geeksforgeeks. (2024, May 22). Python | Linear Regression using sklearn.
Retrieved June 20, 2024, from Geeksforgeeks: https://www. geeksforgeeks.
org/python-linear-regression-using-sklearn/

5. Geeksforgeeks. (n.d.). How To Do Train Test Split Using Sklearn In Python.
Retrieved June 15, 2024, from geeksforgeeks.org: https://www.
geeksforgeeks.org/how-to-do-train-test-split-using-sklearn-in-python/

5. howtoexcel. (n.d.). How to Calculate RSI in Excel. Retrieved June 15, 2024,
from howtoexcel.net: https://howtoexcel.net/2023/05/how-to-calculate-rsi-
in-excel.html

6. Korstanje, J. (n.d.). The k-Nearest Neighbors (kNN) Algorithm in Python.
Retrieved June 22, 2024, from realpython.com: https://realpython.com/knn-
python/

7. Remesh, A. (n.d.). The Advantages and Disadvantages of Technical Analysis.
Retrieved June 13, 2024, from strike.money: https://www.strike.
money/technical-analysis/pros-and-cons

8. scikit-learn. (n.d.). mean_absolute_error. Retrieved June 16, 2024, from
scikit-learn.org: https://scikit-learn.org/stable/modules/ generated/
sklearn.metrics.mean_absolute_error.html

9. scikit-learn. (n.d.). mean_absolute_percentage_error. Retrieved June 16,
2024, from scikit-learn.org: https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.mean_absolute_percentage_error.html

10. scikit-learn. (n.d.).mean_squared_error.Retrieved June 15,2024, from scikit-
learn.org: https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.mean_squared_error.html

11. Verma, A. (2023, February 10). GridSearchCV in scikit-learn: A
Comprehensive Guide. Retrieved June 20, 2024, from dev.to:
https://dev.to/anurag629/gridsearchcv-in-scikit-learn-a-comprehensive-
guide-2a72

~| 62 I Iwww.worldwidejournals.com|>

