
PARIPEX - INDIAN JOURNAL F RESEARCH | O September - 202Volume - 13 | Issue - 09 | 4 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

A
B

ST
R

A
C

T

The fluctuating nature of stock prices creates a sense of uncertainty and uneasiness for investors. It is extremely difficult
to predict stock prices as price movements are a result of the mass psychology of buyers and sellers. To address this
issue, this study aims to identify the best machine learning model to accurately predict stock prices of 5 fortune 500
companies which include Amazon, Meta, Tesla, Apple and Nvidia. The machine learning models used are Linear
regression, Decision trees, Random forests, XGboost and K-Nearest Neighbours. Ridge regression was also used in the
beginning, but was discontinued due to very identical results to linear regression in order to save computing power and
time. All models performed perfectly well and the performance improved significantly using hyperparameters through
the grid search feature. Comparing all models, the Random forests model performed the best among all. The
performance of the models can be improved by using a dataset with more features and increasing the number of
hyperparameters for all models. Moreover, the random forest model can be extended into an application that provides
insights about stock prices for investors

ORIGINAL RESEARCH PAPER Machine Learning

INVESTIGATING THE EFFECTIVENESS OF
DIFFERENT MACHINE LEARNING
ALGORITHMS TO PREDICT THE PRICES OF
STOCKS

KEY WORDS: Machine
Learning Algorithms,
Hyperparameters, Stocks,
Features

www.worldwidejournals.com 59

Ruchit Karnik Indian School Wadi Kabir [Cambridge](Student)

INTRODUCTION
Since the beginning of the stock market, predicting stock
prices has been of great interest to economists, investors and
traders. Early methods to predict stock prices include
fundamental analysis and technical analysis amongst others.
Fundamental analysis consists of analysing a company's
financial statements, ratios and economic indicators, while
technical analysis comprises of examining chart patterns.
Although these methods have seen some success over the
years, they are known to be extremely unreliable and
misleading due to oversimplifying the factors that determine
stock prices. (Remesh, n.d.) To overcome such limitations of
traditional prediction methods, algorithmic trading was
conceived. This involves the use of computer programs to
analyse historic values of features that influence stock prices
to foresee them. In fact, this research involves the use of basic
algorithmic trading algorithms to compare the effectiveness
of different algorithms.

DATASETS
The datasets were obtained for the following companies:
Amazon, Apple, Tesla, Meta and Nvidia. Each dataset includes
information about the stock for each day for the last 5 years.
The information included for each day is the date, the open
price, the high price, the low price, the close price, the
adjusted close price, and the volume. All datasets were
obtained from Yahoo finance due to its credibility and the
datasets were all stored as CSV files. In order to make the
predictions more accurate some common features were
derived from the information available. The raw Amazon and
Apple datasets downloaded from Yahoo finance are shown as
an example below.

Figure 1: Screenshot of Raw Amazon CSV File

Figure 2: Screenshot of raw Apple CSV file

METHODOLOGY
Features
The datasets were all downloaded as csv files and added to a
common PyCharm project. The following features were used
to train the models: price change, difference between high
and low price, Relative Strength Index (RSI) and volume. Only
volume was used from the raw data, rest of the features were
derived from the data. The price change was derived by
subtracting the closing price of one day from the previous day.
The difference between the high and low price was derived
by subtracting the high price from the low price. Deriving the
RSI had a complex procedure (howtoexcel, n.d.). The RSI was
calculated over a 14-day period. A column was made for each
the gains and the losses in price using the price change
column. If the there was a price gain, it was included in the
gains column and 0 was included in the losses column, while if
there was a price loss, the absolute value of the loss was
included in the losses column and 0 was included in the gains.
The below figure shows an example of this for Amazon stock.

PARIPEX - INDIAN JOURNAL F RESEARCH | O September - 202Volume - 13 | Issue - 09 | 4 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

60 www.worldwidejournals.com

Figure 3: Example Of The Gains And Losses In The
Amazon Stock

Furthermore, average gain and average loss columns were
made using data from the gains and losses columns. The
average gain column includes the average of 14 days of gains,

thfor example the 14 day includes the average of the gains from
st th ththe 1 day to the 14 day and the 15 day includes the average

nd thof the gains from the 2 day to the 14 day. The same logic
applies to the average loss column. An example of this is
shown below from the Amazon stock file

Figure 4: Example Of Average Gain And Average Loss In
The Amazon Stock

Next, using the average gain and average loss, the relative
strength was calculated. The relative strength was calculated
by using the formula 'Average Gain/ Average Loss'. An
example of this is shown is shown below. The RS column refers
to the Relative strength.

Figure 5: Example Of Relative Strength From Amazon
Stock Data

Finally, the relative strength index is calculated using the
following formula:
RSI = 100 - (100 / (1 + RS)).

Figure 6: Screenshot Of All Derived Features

Machine Learning Models And Code
The following models were used: Linear Regression, Decision
Tree, Random Forest, XGBoost and K-nearest Neighbour
(KNN). The details of each model are discussed below where
necessary along with some common code.

Common Code

Figure 7: Screenshot Of Common Code

The above code first imports Pandas, next all the necessary
machine learning models. It also imports the train test split
feature (3) in line 9. This feature splits the datasets into
training and testing sets. This means that some part of the
dataset will be used to train the models, and the remaining
part will be used for testing the accuracy of the model. Moving
on, three types of evaluating metrics are imported: the mean
squared error (4), the mean absolute error (5) and the mean
absolute percentage error (6). These three metrics are used in
order to obtain a comprehensive evaluation of each model.
Each metric captures different error characteristics: the mean
squared error is sensitive to outliers and hence highlights
larger er rors ; the mean absolute er ror o f f ers a
straightforward estimate of the average prediction error,
regardless of outliers. Finally, the mean absolute percentage
error allows the error to be interpretable as a percentage,
allowing it to be easily understood. Moving on, GridSearchCV
(7) was imported to select the best hyperparameters and so
improve the performance of all models. Lines 17 and 18 tell
the program which stock to analyse, and line 19 sets the close
price as a target for prediction. Line 20 selects the features to
use as the basis for prediction. Line 24 tells the program how
much data should be training data and testing data. I have
selected 20% of the data to be testing data and 80% as
training data, as generally the majority of the data must be
training data for the model to get an accurate understanding
of the data. The random state feature is used here and
throughout the code in order to make the results replicable.

Figure 8: Linear Regression Code

This is the standard code for fitting a dataset with linear
regression (geeksforgeeks, 2024) and making a prediction.

Other Models
All the following models use the grid search feature in order
to find the best hyperparameters from the parameter grid.
The rest of the code for each model is the standard code to
utilise those models.

PARIPEX - INDIAN JOURNAL F RESEARCH | O September - 202Volume - 13 | Issue - 09 | 4 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

www.worldwidejournals.com 61

(geeksforgeeks, 2023)
Figure 9: Decision Tree Code

(Geeksforgeeks, 2023)
Figure 10: Random Forest Code

(educative, n.d.)
Figure 11: GBoost Code

(Korstanje, n.d.)
Figure 12: K Nearest Neighbour Code

Grid Search Code

Figure 13: Grid Search code

Firstly, in the above code, the parameters of GridSearchCV
are set. The estimator is set to the model that is currently being
used. The parameter grid is set to the parameter grid used
and 'cv' is set to 5 because it is considered to be a balance
between computational efficiency and quality evaluation. N
jobs is set to -1 to allow parallel processing and using all cores
of the computer, leading to faster processing. Negative mean
absolute error is used as the scoring parameter so that
GridSearchCV selects hyperparameters that aim to reduce
the mean absolute error, improving prediction accuracy. The
code from line 68 to 70 is the standard code for GridSearchCV.

Printing Results

Figure 14: Printing Results Code

The code in line 72 prints the best parameters according to
GridSearchCV for each model in use. The rest of the code

from line 73 to 74 prints the results of the model's evaluation
metrics.

Figure 15: Example Results

The above figure shows the result for predicting the Apple
stock using the Decision tree model. The first line outputs the
best hyperparameters and the next three lines output the
evaluation metrics for this model.

Best Hyperparameters For Each Model
Hyperparameters were available for all used models other
than Linear regression. The hyperparameter settings for each
model shown below for each company's dataset shows the
parameters that lead to best the result according to the
negative absolute error metric.

Table – 1 Decision Tree Hyperparameters

Table-2 Random Forest Hyperparameters

Table-3 XGboost Hyperparameters

Table-4 K-nearest Neighbour

RESULTS
The best model for each metric for is bolded. The following
are the results of this investigation:

Table – 5 Amazon Results

Table – 6 Apple Results

Table – 6 Meta Results

Max
depth

Max leaf
nodes

Min samples
leaf

Min samples
split

Amazon 7 10 50 2
Apple 7 30 1 2
Meta 15 None 2 50
Tesla 10 None 5 2
Nvidia 7 None 5 2

Max
depth

Max leaf
nodes

Min samples
leaf

Min samples
split

Amazon 10 1 10 300
Apple None 1 2 200
Meta 10 2 10 500
Tesla 10 2 2 500
Nvidia 10 1 2 500

Gamma Learning rate Max depth N estimators
Amazon 0 0.01 5 200
Apple 0.2 0.1 None 500
Meta 0.2 0.1 5 1000
Tesla 0.1 0.1 5 50
Nvidia 0 0.1 5 500

Leaf size N neighbours P Weights
Amazon 10 20 1 uniform
Apple 10 100 1 uniform
Meta 10 100 1 uniform
Tesla 10 100 1 uniform
Nvidia 10 100 1 uniform

PARIPEX - INDIAN JOURNAL F RESEARCH | O September - 202Volume - 13 | Issue - 09 | 4 | PRINT ISSN No. 2250 - 1991 | DOI : 10.36106/paripex

62 www.worldwidejournals.com

Table – 7 Tesla Results

Table – 8 Nvidia Results

Overall, the random forest model worked best for all
companies, with the exception being XGboost in the case of
Meta, Tesla and Nvidia for the Mean squared error metric.

CONCLUSION
It can be concluded that the random forest model works best
among the models selected for these companies. However,
currently the model lacks accuracy due to the small number
of features used. This research can be extended to include
many more features such as the number of X (formerly twitter)
mentions, positive and negative news mentions, general
economic indicators amongst others. This, along with
increasing the hyperparameters tested will drastically
improve the accuracy of the model and make it much more
worthwhile for investors to use the model as a reference. For
the extension of this research, the random forest model is
highly suitable as it emerged as the best model amongst
models tested in this research.

REFERENCES
1. educative. (n.d.). Regression using XGBoost in Python. Retrieved June 22,

2024, from educative.io: https://www.educative.io/answers/regression-
using-xgboost-in-python

2. geeksforgeeks. (2023, January 11). Python | Decision Tree Regression using
sklearn. Retrieved June 20, 2024, from geeksforgeeks: https://www.
geeksforgeeks.org/python-decision-tree-regression-using-sklearn/

3. Geeksforgeeks. (2023, December 16). Random Forest Regression in Python.
Retrieved June 20, 2024, from geeksforgeeks.org: https://www.
geeksforgeeks.org/random-forest-regression-in-python/

4. geeksforgeeks. (2024, May 22). Python | Linear Regression using sklearn.
Retrieved June 20, 2024, from Geeksforgeeks: https://www. geeksforgeeks.
org/python-linear-regression-using-sklearn/

5. Geeksforgeeks. (n.d.). How To Do Train Test Split Using Sklearn In Python.
Retrieved June 15, 2024, from geeksforgeeks.org: https://www.
geeksforgeeks.org/how-to-do-train-test-split-using-sklearn-in-python/

5. howtoexcel. (n.d.). How to Calculate RSI in Excel. Retrieved June 15, 2024,
from howtoexcel.net: https://howtoexcel.net/2023/05/how-to-calculate-rsi-
in-excel.html

6. Korstanje, J. (n.d.). The k-Nearest Neighbors (kNN) Algorithm in Python.
Retrieved June 22, 2024, from realpython.com: https://realpython.com/knn-
python/

7. Remesh, A. (n.d.). The Advantages and Disadvantages of Technical Analysis.
Retrieved June 13, 2024, from strike.money: https://www.strike.
money/technical-analysis/pros-and-cons

8. scikit-learn. (n.d.). mean_absolute_error. Retrieved June 16, 2024, from
scikit-learn.org: https://scikit-learn.org/stable/modules/ generated/
sklearn.metrics.mean_absolute_error.html

9. scikit-learn. (n.d.). mean_absolute_percentage_error. Retrieved June 16,
2024, from scikit-learn.org: https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.mean_absolute_percentage_error.html

10. scikit-learn. (n.d.). mean_squared_error. Retrieved June 15, 2024, from scikit-
learn.org: https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.mean_squared_error.html

11. Verma, A. (2023, February 10). GridSearchCV in scikit-learn: A
Comprehensive Guide. Retr ieved June 20, 2024, from dev.to:
https://dev.to/anurag629/gridsearchcv-in-scikit-learn-a-comprehensive-
guide-2a72

