PARIPEN	Research Paper	Mathematics
	A Study on Divisor Cordial Labellin Attached Paths and Cycle	ng of Star s

Dr.A.NELLAI	Associate Professor, PG and Research Department of Mathemat-			
MURUGAN	ics, V.O.Chidambaram College, luticorin -628008			
Miss .M.TAJ NISHA	M.S.c., Mathematics, V.O.Chidambaram College, Tuticorin.			

A divisor cordial labeling of a graph G with vertex set V is a bijection from V to $\{1, 2, ..., V(G)\}$ such that if each edge uv is assigned the label 1 if f(u)/f(v) or f(v)/f(u) and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by atmost 1. A graph which admits divisor cordial labeling is the divisor cordial graph. In this paper, it is proved that P4 @ 2K1, n, P6 @ 2K1, n, C4 \otimes Sn, C5 \otimes Sn are divisor cordial graphs.

KEYWORDS

cordial labeling, Divisor cordial graph 2010 Mathematics subject classification Number:05C78

of

f(v)/f(u)

number

1.Introduction:

A graph G is a finite non –empty set of objects called vertices together with a set of unordered pairs of distinct vertices of G which is called edges.Each pair $e = \{u, v\}$ of vertices in E is called an edge or a line of G in which e is said to join u and v.We write e=uv and say that u and v are adjacent vertices; vertex u and the edge e are incident with each other, as are v and e.If two distinct edges e1 and e2 are incident with a common vertex, then they are called adjacent edges. A graph with p vertices and q edges is called (p,q)-graph. By a graph ,we mean a finite simple and undirected graph.The vertex set and edge set of a graph G denoted by V(G) and E(G)respectively. For graph theoretic terminology we follow [1,2].

Definition:1.1

Let G be a graph and we define the concept of divisor cordial labeling as follows:

Α divisor cordial labeling of а G with graph vertex set V is а bijection from to $\{1,2,...,V(G)\}$ V such that if each edge uv is assigned the label 1 if f(u)/f(v)or and the number of edges labeled with 1 differ by atmost 1. Α graph which admits divisor cordial labeling is the divisor cordial graph.

edges

and 0 otherwise,

labeled

then

with

the

0

Definition:1.2

 P_m @ $2K_{1,n}$ is a graph which is obtained by joining the root of the star $K_{1,n}$ to the end vertex of the path P_m .

Definition: 1.3

 $C_n \otimes S_m$ is a graph which is obtained by joining the root of the star S_m to the any one vertex of the cycle C_n

2. Main results

THEOREM 2.1 :

P4 @ 2K1, n is a divisor cordial graph.

PROOF:

Let V (P4 @ 2K_{1, n}) = { ($u_i / 1 \le i \le 4$), ($v_i, w_i : 1 \le i \le n$) } Let E (P4 @ 2K_{1, n}) = { [(u_i u_{i+1}) / 1 ≤ i ≤ 3] \cup [(u₄v_i) / 1 ≤ i ≤ n] \cup [(u₁w_i) /1 ≤ i ≤ n] }

The vertex labeling are defined by f:V(P4 @ $2K_{1, n}$) \rightarrow {1, 2, ..., 2n+4}

$$\begin{array}{rcl} f(u_2) &=& 3\\ f(u_3) &=& 2\\ f(w_i) &=& 2(i+2)\,;\,\, 1\leq i\leq n\\ f(v_i) &=& 2i+3 \quad;\,\, 1\leq i\leq n \end{array}$$

The induced edge labeling are,

$f(u_iu_{i+1})$	=	1	; i=1,3
$f(u_iu_{i+1})$	=	0	; i=2
$f\left(u_{1}w_{i}\right)$	=	1	; $1 \le i \le n$
$f(u_4v_1)$	=	0	; $1 \le i \le n$
т			

Here,

$$e_{f}(0) = e_{f}(1) - 1$$

Clearly, this satisfies the condition,

 $|e_{f}(0) - e_{f}(1)| \leq 1$ Hence, the induced edge labeling shows that P4 @ 2K_{1, n} is a divisor cordial graph.

For example, P4 @ $2K_{1, 6 is}$ a divisor cordial graph as shown in figure 2.2.

figure 2.2 : P4 @ 2K1,6

THEOREM 2.3 :

 $P_6 @ 2K_{1,n}$ is a divisor cordial graph.

PROOF:

Let V (P₆ @ 2K_{1,n}) = {($u_i / 1 \le i \le 6$),

$$(u_{1i}, u_{2i}: 1 \le i \le n)$$

Let E (P6 @ $2K_{1,n}$) =

$$\{ [(u_{i}u_{i+1}) / 1 \le i \le 5] \\ \cup [(u_{1}u_{2i}) / 1 \le i \le n] \\ \cup [(u_{6}u_{1i}) / 1 \le i \le n] \}$$

The vertex labeling are defined by						
$f: V(P_6 @ 2K_{1,n}) \rightarrow \{1, 2,, 2n+6\}$						
$f\left(u_{1}^{\cdot}\right)$	=	i	;	i =	1,6	
$f(u_2)$	=	4				
$f(u_3)$	=	2				
$f(u_4)$	=	5				
$f(u_5)$	=	3				
$f\left(u_{2i}^{}\right)$	=	2(i+3	3);1	\leq	i ≤ n	
$f(u_{1i})$	=	2i+5	;	≤	$i \leq n$	

The induced edge labeling are,

 $\begin{array}{rll} f\left(\,\,u_{1}u_{2}\right) &=& 1 \\ \\ f\left(\,\,u_{5}u_{6}\,\,\right) &=& 1 \\ \\ f\left(\,\,u_{i}u_{i+1}\right) &=& 0 & ; \, i=3,4 \\ \\ f\left(\,\,u_{i}u_{2i}\,\,\right) &=& 1 & ; \, 1\,\leq\,i\,\leq\,n \\ \\ f\left(\,\,u_{6}u_{1i}\,\,\right) &=& 0 & ; \, 1\,\leq\,i\,\leq\,n \end{array}$

Here,

 $e_{f}(0) = e_{f}(1) - 1$

Clearly, this satisfies the condition,

 $| e_{f}(0) - e_{f}(1) | \le 1$

Hence, the induced edge labeling shows that $P_6 @ 2K_{1,n}$ is a divisor cordial graph.

For example, $P_6 @ 2K_{1,6}$ is a

divisor cordial graph as shown in figure 2.4.

figure 2.4: P₆ @ 2K_{1,6} <u>THEOREM 2.5:</u>

 $C_4 \otimes S_n$ is a divisor cordial graph.

PROOF:

Let V(C₄ \otimes S_n) = { (u_i / 1 ≤ i ≤ 4),

$$v, (v_i / 1 \le i \le n)$$

Let E (C₄ \otimes S_n) = {[(u_iu_{i+1})/1 ≤ i ≤ n-1]

 $\mathsf{U} \; (u_1 u_4) \; \mathsf{U} \; (u_1 v) \; \mathsf{U} [(v v_i \;) \; / \; 1 \leq i \leq n\text{--}1] \; \}$

The vertex labeling are defined by

$$f: V (C_4 \otimes S_n) \rightarrow \{1, 2, \dots, n+4\}$$

 $f(u_1) = 1$

f(v) =2 $f(u_i) = n+i; 2 \le i \le 4$ $f(1_{1}) = i_{1} + 2; 1 \le i_{1} \le n-1$ 0 1 1 0 5 0 The induced edge labelia are, 10 1 1 1 $f(u_1v) = 1$ $g_i f(v_i) = 8$ 1 0 0 6 7 $(0 \quad if \quad i \equiv 1 \mod 2)$ $1 \le i \le n$ 1 if $i \equiv 0 \mod 2$

When n is odd,

$$e_{f}(0) = e_{f}(1) - 1$$

When n is even,

$$e_{f}(0) = e_{f}(1)$$

Clearly, it satisfies the condition

$$\left|e_f(0) - e_f(1)\right| \le 1$$

Hence, the induced edge labeling shows that, $C_4 \otimes S_n$ is a divisor cordial graph.

For example, $C_4 \otimes S_7$ and $C_4 \otimes S_8$ is a divisor cordial graph as shown in figure 2.6 and figure 2.7 respectively.

Figure 2.7 : $C_4 \otimes S_8$

THEOREM 2.8:

 $C_5 \otimes S_n$ is a divisor cordial graph.

PROOF:

Let V($C_5 \otimes S_n$) = { ($u_i / 1 \le i \le 5$),

$$v, (v_i / 1 \le i \le n) \}$$

Let E ($C_5 \otimes S_n$) = {[$(u_i u_{i+1})/1 \le i \le n-1$]

$$\cup$$
 (u₁u₅) \cup (u₁v) \cup [(vv_i) / 1 ≤ i ≤ n-1]}

The vertex labeling are defined by

$$f: V (C_5 \otimes S_n) \rightarrow \{1, 2, \dots, n+5\}$$

 $f(u_{1}) = 1$ f(v) = 2 $f(u_{1}) = n+i ; 2 \le i \le 5$

$$|e_{f}(0) - e_{f}(1)| \le 1$$

Hence the induced edge labeling shows that $C_5 \otimes S_n$ is a divisor cordial graph.

For example, $C_5 \otimes S_7$ and $C_5 \otimes S_8$ is a divisor cordial graph as shown in figure 2.9 and figure 2.10 respectively.

Figure 2.9: C₅⊗S₇

Figure 2.10 : $C_5 \otimes S_8$

The induced edge labeling are,

$$f(u_1v) = 1$$

$$f(vv_i) = \begin{cases} 0 & if \quad i \equiv 1 \mod 2 \\ 1 & if \quad i \equiv 0 \mod 2 \end{cases}$$

When n is odd,

$$e_{f}(0) = e_{f}(1)$$

When n is even,

 $e_{f}(0) - 1 = e_{f}(1)$

Clearly, this satisfies the condition,

REFERENCES

1. Gallian. J.A,A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinotorics 6(2001)#D36. [2. Harary,F., Graph Theory, Addision – Wesley Publishing Company Inc, USA, 1969.] 3. A.Nellai/Murugan, Studies in Graph theory- Some Labeling Problems in Graphs and Related Topics, Ph.D Thesis, September 2011.] 4. A.Nellai/Murugan and G.BabySuganya, "Cordial Labeling Of Path Related Splitting Graphs",Indian Journal Of Applied Research, volume:4, issue:3 2014,pp 01-08. | 5. R.Varatharajan, Studies in Graph Labeling – Divisor Cordial Labeling and other labeling,Ph.D Thesis, July 2012. |