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INTRODUCTION
In nature, Chlamydomonas reinhardtii and other eukaryotic algae 
depend on a CO2-concentrating mechanism (CCM) to supply 
sufcient inorganic carbon (Ci; CO2 or bicarbonate) for 
photosynthesis-fueled cell growth and proliferation. Mutant cells 
lacking key components of the CCM molecular machinery or its 
regulatory system do not grow or grow poorly unless supplied with 
high concentrations of CO2 (e.g., >10,000 ppm) that are well above the 

1ambient level of ~392 ppm.  Because the diffusion rate of CO2 in 
aqueous environments is ~10,000 times slower than in air, most natural 
populations of microalgae exist in CO2-limited conditions. This is 
especially true for dense algal populations growing under abundant 
sunlight. Under such conditions, CO2 concentrations can become very 
low (<100 ppm) and cells induce the CCM to maximal levels. CO2 
starvation induces the transcription of numerous genes encoding 

1,2proteins closely associated with the CCM and its activities.  Indeed, 
C. reinhardtii and most other eukaryotic algae have developed a nely 
tuned regulatory system that suppresses expression of CCM-related 
genes under conditions of replete CO2 (i.e., >0.1% CO2) and activates 

 1,2 expression of these genes when CO2 becomes limiting. Previous 
studies using RNA gel blot analyses and microarray analyses have 
revealed a number of CCM-associated genes and other CO2-
responsive genes whose transcription is tied to the physiological 

3changes that accompany cell acclimation to CO2 stress conditions.  

Here, we report an extensive global analysis of the massive 
transcriptional changes evoked by the deprivation of Ci in C. 
reinhardtii. We measured these transcriptional events using replicated 
deep RNA sequencing (RNA-Seq) on the Illumina platform. The 
highly reproducible RNA-Seq experiments not only conrm earlier 
observations based on array analyses quoted above but also extend the 
list of differentially expressed genes from a few hundred to over 4000.

We report the discovery of an extensive system of head-to-head (HTH; 
also called divergent) gene pairs, many of them sharing bidirectional or 
connected promoters. HTH conformation and bidirectional or shared 
promoters frequently perform the highly accurate coregulation of gene 
pairs encoding subunits of the same protein complex or two proteins of 
similar or related functions. Here, we focus on those HTH, 
coregulated, gene pairs that are most relevant to the CCM. Advanced 
computational techniques also have allowed an extensive evaluation 
of potential regulatory elements in promoter regions in CO2- 
responsive genes and the discovery of new elements shared by several 
of the most highly stimulated CO2-responsive genes. We also report a 
previously unrecognized pattern of expression for many genes that 
suggests a signicant, but transient, decrease in gene transcription 
immediately after a shift to very low CO2 conditions (ASVLCO2). 

Finally, we employ a vastly expanded pool of transcriptomic data to 
strengthen earlier observations of metabolic and physiological 
changes that occur when CO2 becomes limiting in the environment, 
including signicant decreases in transcripts encoding proteins 
involved in photosynthesis, cytoplasmic, chloroplastic, and 
mitochondrial protein synthesis, energy use, protein transport, and 

4other Gene Ontology (GO) categories.

METHODS AND MATERIALS
Ci Deprivation
Chlamydomonas reinhardtii wild-type strain CC124 was used for 
analysis. Briey, cells were grown in 2 liters of Tris Phosphate medium 
at 25°C and 3% CO2 to a density of 1 X 106 cells/mL before being 
transferred to a 3-liter autoclavable glass bioreactor (Applikon 
Biotechnology) that was connected with EZ control for analysis of 

5temperature, pH, and dissolved oxygen.  The bioreactor was 
illuminated with a light intensity of 200 μmol photons m-2 s-1, and an 
input gas containing 5% CO2 was introduced. Algal cells were allowed 
to equilibrate with the new environment for 1 h. Following a sampling 
of the culture, the input gas for the bioreactor was shifted to 100 ppm 
CO2, which was monitored in the culture using two CO2 transmitters 
(Vaisala; models GMT221 and GMT222). Samples were taken at 15, 
30, 60, and 180 min following the shift to 100 ppm CO2. During the 
experiment, pH was maintained at 7.2 using 3 M KOH.

Preliminary Analysis of RNA Samples
To conrm induction of the carbon-concentrating mechanism, 
preliminary analysis of RNA samples was performed using qRT-PCR. 
RNA samples were prepared for analysis using the Plexor Two-Step 
qRT-PCR system (Promega). qRT-PCR analysis was performed using 
a 7500 Real-Time PCR System (Life Technologies). The genes LCIA 
(AB168092), LCIB (XM_001698292), and mitochondrial carbonic 
anhydrase (CAH4, XM_001695951) were chosen for analysis as they 
have been observed to increase in expression during carbon 

3,6deprivation.  CAH2 (X54488) was also selected as a control gene 
reported as displaying a moderate decrease in expression in response to 
carbon deprivation. CIA5/CCM1 (AF317732) was used as a positive 
control as it shows constitutive expression during carbon deprivation. 
Fluorescently labeled primer pairs were designed for each of the 
aforementioned genes. Quantitative PCR analysis was performed 
using a 7500 Real-Time PCR System by measuring the threshold cycle 
(Ct) of each gene. Using the Ct values of CIA5/CCM1 for each RNA 
sample as a baseline control, the change in Ct for each gene could be 
used to calculate the fold change response of each gene throughout the 
time course.
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ABSTRACT
A CO2-concentrating mechanism (CCM) is essential for the growth of most eukaryotic algae under ambient (392 ppm) and very low (<100 ppm) 
CO2 concentrations. In this study, we used replicated deep mRNA sequencing and regulatory network reconstruction to capture a remarkable scope 
of changes in gene expression that occurs when Chlamydomonas reinhardtii cells are shifted from high to very low levels of CO2 (≤100 ppm). 
CCM induction 30 to 180 min post-CO2 deprivation coincides with statistically signicant changes in the expression of an astonishing 38% (5884) 
of the 15,501 nonoverlapping C. reinhardtii genes. Of these genes, 1088 genes were induced and 3828 genes were downregulated by a log2 factor 
of 2. The latter indicate a global reduction in photosynthesis, protein synthesis, and energy-related biochemical pathways. The magnitude of 
transcriptional rearrangement and its major patterns are robust as analyzed by three different statistical methods. De novo DNA motif discovery 
revealed new putative binding sites for Myeloid oncogene family transcription factors potentially involved in activating low CO2–induced genes. 
The (CA)n repeat (9 ≤ n ≤ 25) is present in 29% of upregulated genes but almost absent from promoters of downregulated genes. These discoveries 
open many avenues for new research.
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RNA Sequencing, Mapping, and the Analyses of Gene Expression
From the qRT-PCR data, it was determined that four time points should 
be analyzed by RNA-Seq. A 15-min ASVLCO2 sample was omitted 
from RNA-Seq as qRT-PCR analysis of this sample showed limited 
induction of the aforementioned genes. C. reinhardtii equilibrated at 
~5% CO2 was used as the 0 time control, and three time points 
ASVLCO2 (30, 60, and 180 min) were also analyzed. To provide for 
biological replicates, RNA samples from two individual bioreactor 
runs were analyzed. In total, eight RNA samples were submitted for 
RNA-Seq. Prior to submission, RNA samples were treated with DNase 
and resuspended in 8.3 mM Tris-HCl and 4.2 mM EDTA. RNA-Seq 
was performed at the JGI using an Illumina Genome Analyzer II.

Sequencing reads were mapped to the C. reinhardtii version 4 genome 
(Department of Energy JGI) as well as to the processed Augustus5 

7exon structure predictions using the tophat and cufinks software.  No 
more than two mismatches per sequencing read were allowed. 
Analyses of differential expression including FDR calculations were 
performed using three independent Bioconductor packages: edgeR, 

8DESeq and baySeq.

Time series analysis of the transcriptional response was performed by 
9k-means cluster analysis.  This method partitions fold change patterns 

into k clusters where each fold change time series belongs to the cluster 
with the nearest mean. The clusters are iteratively rened. Such 
analyses have been used to identify temporal expression patterns of a 
large numbers of genes.

Gene Ontology Analyses
Complex functional patterns of the differentially regulated genes 
emerge at the level of photosynthetic categories, low CO2–regulated 
genes, and plant and diatom genes that have no close relatives in other 
kingdoms or in prokaryotes other than cyanobacteria. We extended 
these analyses to GO, a system for the hierarchical annotation of 
homologous gene and protein sequences in multiple organisms using a 
common, controlled vocabulary. GO allows the practical, high-
throughput interpretation of experiments including RNA-Seq. To 
avoid the subjectivity inherent in the ad hoc interpretations for less 
than obvious patterns, a rigorous method was employed to assess the 

10statistical signicance of expression patterns, called GSEA.  Briey, 
GSEA ranks genes by fold changes and calculates enrichment scores 
for each set. Then, primarily upregulated gene sets are assigned high 
positive enrichment scores and primarily downregulated sets are 
assigned low negative scores. For the statistical signicance of these 

11enrichment scores, FDR is calculated.

De Novo Motif Discovery of Putative Transcription Factor 
Binding Sites
Our complex strategy for the discovery and limited conrmation of the 
transcriptional regulatory network was described earlier. Even in the 
almost complete absence of chromatin immunoprecipitation, protein 
binding array, or protein–protein interaction observations for algae, an 
array of motif discovery algorithms for promoter sequence analysis, 
each complementing the others, knockout mutants of transcription 
factors, and RNA-Seq data allowed us to better understand the CCM 
regulatory network. A key tool is the MEME package for the 
identication of statistically overrepresented variable sequence 
motifs. We searched all promoter regions for all motifs represented as 
positional weight matrices in the commercial version of the 
TRANSFAC Database using its advanced search tool. Conversely, all 

12identied motifs were queried against the TRANSFAC motifs.

RESULTS AND DISCUSSION
Ci deprivation is a major stress that evokes a dramatic transcriptional 
response in algae. Using EST-based macroarrays, the Fukuzawa 

3laboratory  and Grossman and Weeks laboratories pioneered the 
transcriptional proling of Ci deprivation. In initiating our studies, our 
hypothesis was that revolutionary progress in sequencing technology 
and statistical methodology would allow us to discover a large number 
of activated or repressed biological processes and individual genes that 
may have escaped detection using EST arrays. To test this hypothesis, 
we performed deep RNA-Seq using the Illumina Genome Analyzer II 
platform at the Joint Genome Institute (JGI) of the Department of 
Energy. In total, the eight samples collected at four time points (0, 30, 
60, and 180 min after Ci deprivation) produced 98.3 million uniquely 
mapped sequencing reads (12.3 million 71-base-long reads per 
sample). When no more than two mismatches were allowed in the 
anchor regions, ~38% of the reads did not map uniquely or contained 
more than two base errors due to sequencing errors, genomic 
variability, alternative splicing, a number of recently duplicated genes, 

and repetitive DNA elements. Even with this conservative approach, 
RNA-Seq represents a major advance from micro- and macroarrays: It 
provides an unprecedentedly high coverage of transcripts, eliminates 
cross-hybridization effects, does not rely on the commercial 
availability of arrays, and is more robust against errors in predicted 
exon structures. The signicantly increased performance of RNA-Seq 

13has been shown specically for C. reinhardtii.

The high technological reproducibility of the RNA-Seq measurements 
performed at the Department of Energy's JGI is shown by the strong 
correlations of transcript levels between biological replicates (0.958, 
0.965, 0.939, and 0.973 for 0, 30, 60, and 180 min time points after 
carbon deprivation, respectively). These high Pearson correlation 
coefcients indicate reproducible and multiplicative (linear) biases 
and that the nonlinear bias is miniscule. Note that linear, 
multiplicative, and reproducible bias does not alter fold change values 
by multiplying the transcript levels both in the numerator and the 
denominator. Such biases include sequencing reads that match 
imperfectly to the genome or the transcriptome, amplication, and 
sequencing biases. Additive effects, such as unreal exons, may reduce 
the extent of differential expression. These effects are due to imperfect 

7gene models, such as those predicted by the Augustus method  and 
alternative splicing. Such additive effects remain our primary concern. 
Recently duplicated genes pose further challenges in mapping the 71-
base-long sequencing reads to the transcriptome because these reads 
contain erroneous base calls, particularly at their 3' ends. Such gene 
pairs include major effectors of CO2 concentration, such as four 
carbonic anhydrases (CAHs), CAH1-CAH2 and CAH4-CAH5, that 
are recent duplicates. The pair CAH4-CAH5, for example, contains 

14exons that are over 90% identical.

To avoid mappings to the duplicated genes, rigorous procedures (with 
one or two mismatches in the anchor regions that connect two exons) 
are necessary. However, this rigor also drastically reduces the 
coverage of all genes due to both sequencing errors and 
polymorphisms. Reduced coverage reduces the number of 
signicantly differentially expressed genes. Therefore, we performed 
the mapping with both one and two allowed mismatches in the anchor 
region, as implemented in the tophat program. With one allowed 
mismatch, fewer but more accurate transcript levels were obtained 
than with two mismatches. For example, our data, as expected from 
earlier studies, demonstrated that CAH1 is strongly upregulated at 3 h 
ASVLCO2. However, in our initial analyses allowing two 
mismatches, CAH2, which had earlier been reported not to respond to 
CO2, was falsely classied as upregulated. When reanalyzed using 
only one mismatch per read, the vast majority of reads in the 60- and 
180-min time points were mapped to the CAH1 gene, with few being 
attributable to CAH2. Quantitative RT-PCR (qRT-PCR) conrmed the 
results of the more rigorous alignments.

The lists of differentially expressed genes may be inuenced by the 
choice of statistical methodology. Therefore, we analyzed our data 
using three different computational tools, edgeR, DESeq, and baySeq. 
Because differential expression of a large number (~16k) of genes is 
estimated using very few replicates (samples), statistical tools derived 
from large-sample asymptotic theory do not work. In particular, small 
sample size affects the correction for overdispersion (greater 
variability than expected based on Poissonian or other simple models), 
modeling the empirical distributions, and calculating statistical 
signicance. To solve these issues, edgeR shrinks genewise dispersion 
estimates toward a constant value using an empirical Bayesian model 
and performs Fisher's exact test. DESeq uses nonparametric regression 
models to t the negative binomial variance as a function of the mean, 
assuming a locally linear relationship between overdispersion and 
mean expression levels. baySeq is free of this assumption and uses a 
fully empirical Bayesian approach to estimate the posterior 
probabilities. We compared the numbers of overlapping differentially 
expressed genes reported by the edgeR, DESeq, and baySeq packages 
at 180 versus 0 min ASVLCO2. Because the exact test implemented in 
edgeR calculates lower false discovery rate (FDR) q-values than the 
other two methods, at FDR ≤ 0.01, edgeR, DESeq, and baySeq 
reported 4222, 2364, and 3248 differentially expressed genes, 

15respectively.  The lists of differentially expressed genes are more 
consistent when the FDR threshold is elevated to 0.05, a still 
conservative level. All three methods reported differential expression 
for as many as 3141 genes. An additional 702 genes were jointly 
reported by both edgeR and baySeq, and a further 95 genes were called 
jointly by edgeR and DESeq. Because of the high overlaps with other 
methods, and its wider acceptance, below we limit our discussions to 
the results obtained by the edgeR tool.
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Our results reproduced the observed induction of major CCM-
3associated genes published by Miura et al. (2004)  and Yamano et al. 

6 16(2008)  as well as in the companion article . In addition, we report a 
large number of genes that have not been associated with the CCM 
previously. Some of the notable similarities and differences in gene 
sets of our studies and those presented in our companion paper are 
discussed throughout this section (with special attention to the 
potential causes of observed differences provided near the end of this 

16section).

Major Transcriptional Changes
Our results greatly extend many aspects of earlier observations of 
differentially expressed genes following CO2 deprivation. This is 
indicated by relatively similar lists of induced genes published 

3,6previously  and by us. In addition, RNA-Seq and modern statistical 
methodologies allowed us to discover an unexpectedly high 5884 
genes that are differentially regulated at either 30, 60, or 180 min 
ASVLCO2 relative to the 0 min control [FDR ≤ 0.01 and abs(log2 
(fold change)) ≥ 1] or 3828 genes [FDR ≤ 0.001 and abs(log2(fold 
change)) ≥ 2].

Robust temporal expression patterns emerged under our conditions for 
imposition of CO2 deprivation. We found that the transcriptional 
response becomes widespread only after 30 min and increases (or 
decreases) for many, but not all, genes. The relatively slow onset of 
signicant transcript changes is likely coupled to the relatively slow 
decline in CO2 concentrations employed in our experiments. At 30 
min after deprivation, we found only 37 upregulated and ve repressed 
genes relative to the 0 min control (FDR ≤ 0.001 and abs[log2(fold 
change) ≥ 2; or in absolute, nonlogarithmic scale, a fourfold increase or 
decrease). At an hour ASVLCO2, 409 genes are upregulated and 1663 
genes are repressed. At 3 h ASVLCO2, 981 genes are induced and 1188 
genes are repressed. These numbers are approximately doubled at the 
more typical thresholds (FDR q ≤ 0.01 and abs[log2(fold change) ≥ 1;). 
To measure transcript levels by a different method, we performed qRT-
PCR analyses on the same RNA samples that were submitted for 
Illumina sequencing. Three different genes induced by CO2 
deprivation (Low CO2 Induced A (LCIA), CAH5, and LCIB) 
displayed similar expression patterns between RNA-Seq and qRT-
PCR, while a fourth gene, CAH2, previously reported as not 

17responding or responding negatively to CO2 depletion , showed 
moderate decreases in transcript levels using both RNA-Seq and RT-
PCR measurements. 

Figure 1 - Measurements of CO2 Levels Following a Shift of C. reinhardtii 
Cells from 5% to 100ppm CO2. Two CO2 monitors were used in the 
fermenter: One was calibrated for high CO2 concentrations (circles), and 
the other was calibrated to low CO2 concentrations (triangles). CO2 
concentrations are plotted on a log10 scale. The horizontal red line 
represents the 392 ppm concentration of the atmosphere. The reduction in 
CO2 is represented both in a linear (inset) and logarithmic scale.

CONCLUSION
The strong correlation of transcript levels in data obtained from 

biological replicates used for RNA-Seq analyses. Together, these 
observations conrm the high technological reproducibility of deep 
RNA-Seq as well as the reproducibility of our biological samples. The 
magnitude of transcriptional rearrangement and its major patterns are 
robust as analyzed by three different statistical methods. De novo DNA 
motif discovery revealed new putative binding sites for Myeloid 
oncogene family transcription factors potentially involved in 
activating low CO2–induced genes. The (CA)n repeat (9 ≤ n ≤ 25) is 
present in 29% of upregulated genes but almost absent from promoters 
of downregulated genes. These discoveries open many avenues for 
new research.
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