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ABSTRACT In present paper we studied the effect of heat source/sink on flow and heat transfer of MHD nanofluid due 
to stretching sheet. The governing PDE’s of the flow heat transfer and mass transfer are converted into ODE’s 

using suitable similarity transformations, with its boundary conditions. The ODE’s of the flow, heat and mass transfer are solved 
numerically using Fourth order Runge-Kutta method with efficient  shooting technique. The effect of governing parameters on flow, 
heat and mass transfer are studied using the plots The various numerical tables which are calculated and tabulated. A comparison of 
our present results with a previous published works has been done and we found that an excellent agreement is there with the earlier 
results and of ours.

1.	 INTRODUCTION
Mustafa et al [1] studied the flow heat and mass transfer of na-
nofluid due to stretching sheet. Here the governing equations of 
the flow heat and mass transfer are solved by Homotopy Analy-
sis Method and studied effects of all governing parameters on 
flow, heat and mass transfer. 	 Mukinde and Aziz [2] to study 
the  effect of a convective boundary condition on boundary layer 
flow, heat and mass transfer and nanoparticle fraction over a 
stretching surface in a nanofluid. The governing boundary layer 
equations have been transformed to a two-point boundary val-
ue and are solved numerically. 

Anuar Ishak et .al[3] the steady two-dimensional MHD stagna-
tion point flow towards a stretching sheet with variable surface 
temperature. In this paper the governing system of partial dif-
ferential equations are transferred into ordinary differential 
equations, which are solved numerically using a finite-differ-
ence scheme known as the Keller-box method. The effects of the 
governing parameters on the flow field and heat transfer char-
acteristics are obtained.

Norfiftah Bachok et.al[4] studied the two-dimensional stagna-
tion point flow of a water based nanofluid over an exponentially 
stretching/shrinking sheet. Z.Abbas et.al[5] the steady mixed 
convection boundary layer flow of an incompressible Maxwell 
fluid near the two-dimensional stagnation-point flow over a 
vertical stretching surface and it is assumed that the stretching 
velocity and the surface temperature very linearly with the dis-
tance from the stagnation point. The homotopy Analysis Meth-
od (HAM) and the influence of the various interesting param-
eters on the flow and heat transfer is analyzed. Hassani et. al[6] 
studied the boundary layer flow  heat and mass transfer of na-
nofluid due to past a stretching sheet. Here the governing equa-
tions of the flow heat and mass transfer are solved by Homotopy 
Analysis Method and studied effects of all governing parameters 
on boundary layer flow, heat and mass transfer. Kuznetsov and 
Nield [7] to studied the  natural convection boundary layer flow, 
heat and mass transfer of nanofluid due to past a vertical plate. 
Here the governing equations of the flow heat and mass transfer 
are solved by analytical method and studied effects of all gov-
erning parameters on natural convection boundary layer flow, 
heat and mass transfer. Noghrehabadi et. al [8] to analyze the 
slip effects on the boundary layer flow and heat transfer over a 
stretching surface of nanoparticle fractions. Here the governing 
equations of  slip effects on the boundary layer flow and heat 
transfer are solved by numerically. The effects of slip boundary 
condition in the presence of dynamic effects of nano particle 
have been investigated. Kandasamy et. al[9] to study the bound-
ary layer flow, heat transfer and nanoparticle volume fraction 
over a stretching surface in a nanofluid for various parameters 

using scalling group of transformation. Bhattacharyya and  Va-
jravelu[10] invesigated the boundary layer stagnation point 
flow and heat transfer over an exponentially shrinking sheet. 
Here an exponential form of similarity transformation, the gov-
erning mathematical equations for the flow and heat transfer 
are transformed into self-similar coupled, nano-linear ordinary 
differential equations. Rohni et. al[11] the flow and heat trans-
fer over an unsteady shrinking surface with wall mass suction 
in a nanofluid by using an appropriate similarity transforma-
tion, similarity equations are obtained and the shooting method 
is used to solve these equations for different values of the wall 
mass suction, unsteadiness nanofluid parameters. Bhattachar-
yya [12] studied the heat transfer in unsteady boundary layer 
stagnation point flow over a shrinking/stretching. The govern-
ing equations are transformed into self-similar ordinary dif-
ferential equations by adopting similarity transformations and 
then the converted equations are solved numerically by shoot-
ing method.

Yacob et. al [13] studied the boundary layer stagnation point 
flow of a micropolar fluid towards a horizontally linearly stretch-
ing/shrinking sheet. Here a mathematical model is devolved 
to study the heat transfer characteristics occurring during the 
melting process due to a stretching/shrinking sheet. The trans-
formed non-linear ordinary differential equations governing 
the flow are solved numerically by the Runge-Kutta –Fehlberg 
method with shooting technique. Layek et al[14] the study of 
two-dimensional stagnation point flow of an incompressible 
viscous fluid towards a porous stretching surface embedded in 
a porous medium subject to suction/blowing with internal heat 
generation or absorption. The motion of this study is to explore 
the influence of suction/blowing on the control of flow separa-
tion as well as heat transfer and also to investigate the effects of 
heat source or sink parameter on hear transfer. The momentum 
and thermal boundary layer equations are solved numerically 
using shooting method.  

Turkyilmazoglu and Pop[15] the flow and heat transfer of a 
Jeffrey fluid near the stagnation point on a stretching/shrink-
ing sheet with a parallel external flow. The main concern is to 
analytically investigate the structure of the solutions which 
might be unique or multiple. Heat transfer analysis is also car-
ried out for a boundary heating process taking into considera-
tion both a uniform wall temperature and a linearly increasing 
wall temperature. Hayat et. al [16] studied the two-dimensional 
stagnation point flow of an incompressible fluid over a stretch-
ing sheet by taking into a account radiation effects using the 
Rosseland approximation to model the radiative heat transfer. 
Under suitable similarity variables, the partial differential equa-
tions are transformed into a system of non-linear ordinary dif-
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ferential equations which is solved analytically by the homotopy 
Analytic Method (HAM). Ibrahim et. al [17] studied the effect of 
magnetic field on stagnation point flow and heat transfer due to 
nanofluid towards a stretching sheet. The transport equations 
employed in the analysis include the effect of parameters. The 
similarity transformation is used to convert the governing non-
linear boundary layer equations to coupled higher order non-
linear ordinary differential equation. These equations were nu-
merically solved using Runge-Kutta fourth order method with 
shooting technique. Mahapatra et.al[18] studied the Analytical 
solution of magnetohydrodynamic stagnation-point flow of a 
power-law fluid towards a stretching sheet. Here the govern-
ing equations of the flow heat and mass transfer are solved by 
Homotopy Analysis Method and studied effects of all governing 
parameters on flow, heat and mass transfer.

2. MATHEMATICAL FORMULATION:
The governing equations of flow heat and mass transfer 
of considered fluid are given by
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      Where u and v are velocity components along x and y- 
axis  υ  is the kinematics viscosity fρ  is the density of the base 
fluid, s electrical conductivity U∞ , 0B , pρ , ( ) fcρ , BD  and TD  are 
the free stream velocity, , magnetic field, the density of the na-
noparticle, heat capacity of a base fluid, the Brownian diffu-
sion and thermophoretic diffusion coefficient respectively, and 
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V= (u, v), , ,,nf nf nfkρ µ , and nfβ are the density, the thermal 
conductivity, and the volumetric volume expansion coefficient 
of the nanofluid, respectively, which are defined  as Thermo-
physical Properties of nanofluids are given by
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ф is the Solid volume fraction, T is the temperature inside the 
boundary layer, ( ) pcρ effective heat capacity of a nanofluid, 
and µ .g  is the acceleration due to gravity. fµ  is the dynamic 
iscosity of the base fluid, fβ  and pβ   are the thermal expansion 
coefficients of the base fluid and the nanoparticle, respectively, 
and pβ are the densities of the nanoparticle, the suffixes f, p, and 
nf denote base fluid, nanoparticle, and nanofluid conditions, re-
spectively, and ( )p nfcρ  is the heat capacitance of the nanofluid,  
Where fk  and kp are the thermal conductivities of the base 
fluid and nanoparticle, respectively. 

The boundary conditions are:  
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Using an order magnitude analysis of the y-direction momen-
tum equation (normal to the sheet) using the usual boundary 
layer approximation:
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After boundary layer approximation, the governing equations 
are reduced to
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We now introduce the following dimensionless quantities; i.e 
similarity transformations used to reduce given partial differ-
ential equations to ordinary differential equations. 
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The equations of continuity is satisfied if we choose a stream 
function ψ (xy) such that
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Using the similarity transformation quantities, the governing 
equations (11). (12), (13) and (14) are transformed to the ordi-
nary differential equation as follows: 
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Where the six governing parameters are defined as:                

                                

Where 'f , θ and h are the dimensionless velocity, tempera-
ture and particle concentration with respect to η is the similar-
ity variables, the prime denotes differentiation with respect to 
η. Pr, A, M, Nb, Nt, Le denotes a Prandtl number, and a velocity 

rario, a magnetic parameter, a Brownian motion parameters, a 
thermophoresis parameter, and a Lewis number, respectively.

The important physical quantities of interest in this problem are 
the skin friction coefficient cf , local Nusselt number 

xNu  and 
the local Sherwood number xSh  are defined as: 

2 ,
( )

w
f

w

c
u
τ

ρ
= ,

( )
w

x
w

xqNu
k T T∞

=
−  

( )
m

x
B w

xhSh
D φ φ∞

=
−                                            (23)

Where the skin friction wτ , wall heat flux qw and wall mass 
flux wq  are given by
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where Rex  xNu , xSh  are local Reynolds number, local 
Nusselt number and local Sherwood number respectively. 

3. NUMERICAL SOLUTION:
In this study, an efficient Runge-kutta fourth order method 
along with shooting technique  has been used to analyze the 
flow model of coupled ordinary differential equations Eq.(18)-
(20) for different values of governing parameters viz. prandtl 
number Pr, velocity ratio parameter A, a Brownian motion pa-
rameter Nt and a Lewis number Le. The coupled ordinary dif-
ferential equations (18)-(20) are  third order in f and second 
order in both θ and h respectively which have been reduced to 
a system of seven simultaneous equations for seven unknown. 
In order to solve numerically this system of equations using 
Range-kutta method, we require seven initial conditions but 
two initial conditions in f one initial condition in each of   θ and h 
are known. However, the values of ƒ’, θ and h are known at η→∞. 
Thus, these three end conditions are utilized to produce two un-
known initial conditions at η= 0 by using shooting technique. 

The Equations (18)-(20) can be expressed as
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The three coupled higher order differential equations and the 
boundary conditions may be transformed to seven equivalent 
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first order differential equations and boundary conditions re-
spectively as given below: Using Eq.(29) we can write the initial 
value problem as follows:

'
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A prime denote the differentiation with respect to η and the bound-
ary conditions are Here prime denotes the differentiation with 
respect to and the initial conditions in Eq.(21) become as follows: 
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Here we need to solve a sequence of initial value problems as 
above, by taking α= nα , β= nβ  and  nγ γ= , so that the end 
boundary values thus obtained numerically match up to desired 
degree of accuracy with the boundary values at ∞ given in the 
problem. In what follows, ( , , , )if α β γ∞  is the solution at 
infinity to be obtained by the classical Runge-kutta method  for 
unknown slopes. Let us assume the initial value problem satis-
fies necessary conditions for existence and uniqueness of solu-
tions, the problem now reduces to that of finding α, β and γ such 
that:
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These are three non-linear equations in p, q and r which are to 
be solved by Newton-Rephson method. This method for finding 
roots of non-linear equations, with 0 0,p q  and 0r  as initial 
values, which yields the following iterative scheme:
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To implement the scheme (33) we require finding the nine 
partial derivatives in the to be inverted matrix. These can be 

obtained by differentiating the initial value problem, given 
in Eq.(30)-(31) with respect to p, q and r. By differentiating  
Eq.(30)-(31) with respect to p, q and r we get three more initial 
value problem known as variational equations. On solving some 
initial value problems, it is possible to go ahead with iterative 
scheme (33).

The accuracy chosen for obtaining p, q and r Newton-Raphson 
method was 710−  . convergence of Newton-Raphson iterative 
scheme was ensured due to the scientific choice of missing ini-
tial values there by circumventing the usual problem of slow 
convergence or divergence or overflow encountered in shooting 
method procedures. Here we also note that, the governing ODEs 
of stretching sheet problems are not stiff and hence we do not 
need procedures 

4. RESULTS AND DISCUSSION:
Fig.2 illustrates the influence of velocity ratio parameter ‘A’ on 
velocity graph. When the free stream velocity exceeds the veloc-
ity of the stretching sheet, the flow velocity increases the bound-
ary layer thickness decrease with increase in ‘A’. Moreover, when 
the free stream velocity less than stretching velocity, the flow 
flied velocity decreases and boundary layer thickness also de-
creases. When A>1, the flow has a boundary layer structure and 
boundary thickness decreases as a values of ‘A’ increases. On the 
other hand, when A< 1, the flow has an inverted boundary layer 
structure, for this case also, as the values A decrease the bound-
ary layer thickness decreases.  Fig.3 shows that the presence of 
transverse magnetic field sets in Lorentz force, which results in 
retarding force on the velocity field. Therefore, as the values of 
M increases does the retarding force and hence the velocity de-
creases.   Fig.4 depicts the variation of temperature graph with 
respect to Prandtl number PR. On observed the temperature 
decreases when the value of Prandtl number PR increase. This 
is due to the fact that a higher Prandtl number fluid has rela-
tively low thermal conductivity, which reduces conduction and 
thereby the thermal; boundary layer thickness; and as a result, 
temperature decreases. The influence of prandtl 

non Newtonian fluids is similar to what we observed in nano-
fluid. Therefore, these properties are also inherited by nano-
fluids. Figs.5 & 6 show the influence of the change of Brown-
ian motion parameter NB and thermophoresis parameter NT 
on temperature profile respectively. It is noticed that as ther-
mophoresis parameter increases the thermal boundary layer 
thickness increases and the temperature gradient at the surface 
decrease (in absolute value) as both NB and NT increase. As it 
is noticed from Fig.7 as Lewis number increases the concentra-
tion graph decreases. Moreover, the concentration boundary 
layer thickness decreases as Lewis number increase. This is 
probably due to the fact mass transfer rate increases as Lewis 
number increases. It also reveals that the concentration gradi-
ent at surface of the plate increases. Fig.8 depicts the effect of 
heat source/sink parameters which is temperature dependent. 
On observing the graph temperature enhance as increase in the 
parametric values of A* heat generates as A* increases. Fig.9 de-
picts the effect of  B* an heat transfer, it is also showing the same 
result as in case of A*. Figs 10, 11 & 12 show the effect of mo-
mentum slip β on velocity profile, thermal slip γ on temperature 
profile and solutal slip δ on mass transfer profile respectively, 
temperature profile and concentration profile decreases with 
increase in parametric values. But opposite result observed in 
velocity profile. Table 1 is tabulated for numerical values of ƒ’’ 
(0)  at M=0, β =γ=δ= 0, our present results are compared with 
Ibrahim et. al [17], Mahapatra [18] and Hayat [16]. Our results 
are in good agreement with above said earlier works.  ƒ’’ (0)  in-
crease as increase in A.

Table 2 tabulated for the numerical values of Nusselt number 
for various values of A and PR a Nusselt number increases on in-
crease in values of PR and A these results are also in good agree-
ment with earlier results Ibrahim et. al [17], Mahapatra [18] and 
Hayat [16]. Table 1: comparison of values of ƒ’’ (0)   with previous 
result when 

Table 2: Comparison of local Nusselt number - θ’(0) at Nt=0, 
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Nb→0, for different values of with  previously published data. 

The table 1 and 2 show the comparison study of our results with 
earlier work there is a good agreement between our and pervi-
ous results with table 1 earlier work.

5. CONCLUSION:
On investigation of nano fluid flow due to stagnation point flow, 
we came to the following conclusions, which are

1.	 Velocity  increases with an increases in A when A > 1.
2.	 The thickness of velocity boundary layer decreases with an 

increase in magnetic field parameter M.
3.	 Thermal boundary layer thickness decreases with an in-

crease in both velocity ratio parameter A and prandtl num-
ber Pr.

4.	 The thickness of thermal boundary layer increases with an 
increase in both Nt= Nb parameter.

5. 	 The magnitude of the skin friction coefficient f ’’(0) increas-
es with M when A≠1and it is zero when A=1

6.  	 An increase in velocity ratio parameter A increases both the 
local Nusselt number and Local Sherwood   

      	 number.
7.	 An increase in magnetic parameter M increases both the lo-

cal Nusselt number - θ’(0) and local Sherwood 
     	 number - h’(0).
8. 	 When the value of velocity ratio parameter A=1, the skin 

friction coefficient, local Nusselt number and
    	 local Sherwood number all are constant.
9. 	 The wall temperature gradient increases with an increase 

in Lewis number Le and prandtl number Pr.
10.	 Increasing value of A* and B* enhances the boundary layer 

thickness and enhances the temperature.

       

Fig-1 Schematic of the two-dimensional 
stretching sheet problem 

Table.1

Pr      A       Present           Ibrahim       Mahapatra        Hayat
                     Result            et al [17]        et al [18]       et al [16]                                

1        0.1       0.6021        0.6022        0.603       0.602156
          0.2       0.6244        0.6245        0.625       0.624467     
          0.5       0.6924        0.6924        0.692       0.692460
1.5     0.1       0.7768        0.7768        0.777       0.776802
          0.2       0.7970        0.7971        0.797       0.797122
          0.5       0.8648        0.8648        0.863       0.864771
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