
DATA COMPRESSION USE IN GENOME SEQUENCE

Original Research Paper

Md. Syed Mahamud
Hossein

Haldia Institute Of Technology

 X 1GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS

More and more DNA and RNA sequences are becoming available day by day. Storing and transmitting
them may require a huge amount of space. Compression of these genome sequences will help us increase

the efciency of their use. We use the Huffman coding algorithm, implemented in C, to compress the given genome sequence. To
design the Graphical User Interface we use Java-Swing.

ABSTRACT

KEYWORDS : DNA, Compression

Neha Vinayak Haldia Institute Of Technology

Computer Science

INTRODUCTION
Biological sequence compression is a useful tool to recover
information from biological sequences. Better compression
implies better understanding. Today, the complete DNA
sequences of many organisms are already known, and the
completion of human genome project is making steady
progress. The information of DNA sequences, RNA sequences
and amino-acid sequences of proteins are stored in molecular
biology databases. It is well known that the sizes of these
databases are increasing nowadays very fast. Therefore it is
needed to store and communicate data efciently.

Since DNA sequences contain four symbols 'a,' 't,' 'g,' and 'c,' if
these were totally random, the most efcient way to represent
them would be using two bits for each symbol. However, only a
small fraction of DNA sequences result in a viable organism,
therefore the sequences which appear in a living organism
are expected to be nonrandom and have some constraints. In
other words, they should be compressible.

METHOD
We use Huffman coding to encrypt the nucleotide genome
sequence , a greedy algorithm that constructs an optimal
prex code called a Huffman code. The algorithm builds the
tree T corresponding to the optimal code in a bottom-up
manner. It begins with a set of |c| leaves and perform |c|-1
“merging” operations to create the nal tree.

Data Structure used: Priority queue = Q
Huffman I
n = |c|
Q = c
for i =1 to n-1
 do z = Allocate-Node ()
 x = left[z] = EXTRACT_MIN(Q)
 y = right[z] = EXTRACT_MIN(Q)
 f[z] = f[x] + f[y]
 INSERT (Q, z)
return EXTRACT_MIN(Q)

The total running time of Huffman on the set of n characters is
O(n lg n).

MATERIALS
Sweet Potato Virus
1 tcaggcactg aaagaacaaa agacgctgga accccaacac
cagcaaaatc agttaagaca
61 agaacaggac aaactcaacc gcttaaagca ccagaaggga
gcacggatcc aacagatcca

121 ccacctccaa cagttgaaga gataattgaa gaagaaacac
cagcacaaaa agcattgagg
181 gaagcccgtg gcaagcaacc agcaacacaa ccctcataca
cttatgggcg agacacagga
241 ccacgtagcc caaagcaagt cacaacaaca agtggagtta
gggatagaga tgttaatgct
301 ggaacagtag ggacgtttac agttccaaga cttcaaatca
catcaagcaa gaagagatta
361 ccaatagttg acggacgtcc agtaatcaac ctggatcact tggcagttta
cgatccagag
421 caaacaaatc ttgcaaatac cagatcaaca caagaacagt
ttaaggcatg gtatgaaggt
481 gtgaagggtg attatggggt atctgatgct gaaatgggca tactccttaa
tggcctcatg
541 gtttggtgta ttgagaatgg tacatcaccg aatattaatg gaatgtgggt
gatgatggac
601 ggagaagaac aagtaactta tccaataaaa cctctattgg
atcatgctgt ccccacattt
661 agacagataa tgacacactt cagcgacata gctgaagcgt
acattgaaaa gagaaacagg
721 ataaaggcct atatgccaag gtatggccta caggggaatt
tgactgatat gagtcttgcg
781 cggtatgcat ttgatttcta tgaactccac tcaaacacac cagtaagagc
aagggaggca
841 catatgcaaa tgaaagcagc agctttaaag aatgcacaga
accgcctgtt tggtttggat
901 ggaaacgtct ccacgcaaga agaagacacg gagaggcata
caacaactga tgttacaaga
961 aatatacata acctgttagg aatgagaggt gtgcagtaaa
caatatattg ctcgtacctt
1021 taatttcagt tggtctttaa tttaaattcg tgtctttcag tcccgaagag
tgttggttgt
1081 gtgtagtaac tatgtgtggt tgtaccaccg t tgctacata
taagaaaacc tctttctatt
1141 acgtatcata agggactctt aaaagtgagt ctttgactcg
taagaaaagc ctttttggtt
1201 cgtgatcgag aa

Potato spindle tuber viroid
1 cggaactaaa ctcgtggttc ctgtggttca cacctgacct cctgagcaga
aaagaaaaaa
61 gaatggcggc tcggaggagc gcttcaggga tccccgggga
aacctggagc gaactggcaa
121 aaaaggacgg tggggagtgc ccagcggccg acaggagtaa
ttcccgcaga aacagggttt
181 tcacccttcc ttccttcggg tgtccttcct cgcgcccgca ggtccacccc
tcgccccctt
241 tgcgctgtcg cttcggctac tacccggtgg aaacaactga
agctcccgag aaccgctttt

VOLUME - 13, ISSUE - 07, JULY - 2024 • PRINT ISSN No. 2277 - 8160 • DOI : 10.36106/gjra

Moumita Bhunia Haldia Institute Of Technology

Payel Chatterjee Haldia Institute Of Technology

Anwesha Ghorai Haldia Institute Of Technology

2 X GJRA - GLOBAL JOURNAL FOR RESEARCH ANALYSIS

301 tctctatctt ccttgcttcg gggcgagggt gtttagccct tggaaccgca
gttggttcct

RESULT
The GUI interface is designed using Java Swing. It takes the ID
of the genome sequence as input, displays the corresponding
genome sequence and on submitting, it encodes the sequence
using Huffman coding.

DISCUSSION
Data compression aims at encrypting a nucleotide genome
sequence at the source so that we can protect the nucleotide
genome sequence from unauthorized use. If the genome
sequence is transmitted to the destination and an
unauthorized user is able to access the sequence and make
changes in it introducing some garbage information, the
structure of the genome will totally change and this will lead to
loss of potentiality if the genome sequence.

The second most important point we have to keep in mind is
Data Compression. The sequence is compressed by means of
encryption, but we have to keep in mind that it does not lead to
data loss.

Future Work
We have successfully been able to encrypt the genome
sequences using Huffman coding. In future we plan to use the
information stored in the genome sequence, to omit sending
the unwanted data in the sequence to achieve data
compression without data loss.

REFERENCES
[1]. Bennett,C., Li,M. and Ma,B. (2000) Linking chain letters. ScienticAmerican,

to appear Benedetto,D., Caglioti,E. and Loreto,V. (2002) Language trees and
zipping. Phys. Rev. Lett., 88, 048702.

[2] Chen, X., Kwong, S., and Li. M., A compression algorithm for DNA sequences
and its applicationsin genome comparison, Genome Informatics, 10:52–61,
December 1999.

[3] Chen,X., Kwong,S. and Li,M. (2001) A compression algorithm for DNA
sequences. IEEE Engineering in Medicine and Biology Magazine, 20, 61–66.

[4] Cleary, J.G. and Witten, I.H., Data compression using adaptive coding and
partial string matching,IEEE Trans. on Commun., COM-32(4):396–402, April
1984.

[7] Nevill-Manning, C.G. and Witten, I.H., Protein is incompressible, Proc. of IEEE
Data Compression Conference, 257–266, 1999.

VOLUME - 13, ISSUE - 07, JULY - 2024 • PRINT ISSN No. 2277 - 8160 • DOI : 10.36106/gjra

