
1.INTRODUCTION
In this article, we study a parabolic-hyperbolic free boundary 

[3]problem  is studied. For this, Fick's law is assumed, i.e., (k K (C)P + 1 P

(k K (C)Q)C. Hence, C satis�es the following equation:2 Q

where  (t) represents the domain at time t,
1D  is positive constant. k and k  are two positive constants, C  is a 1 2

positive constant.

Fick's law is also assumed                                    is the drug 
consumption rate m m   are two positive constants.1, 2

Hence, W satis�es                                                                                         in 
(t),                                                                                                           (1.3)

Where D  is to be a positive constant, (W ) is a positive constant.2

we denote v is the velocity �elds v.   assume byDarcy's  law, we have 

                                                                                                                  (1.5)

where�s is the pressure                          
P+Q+D=N in W(t),t>0 ,                                                                        (1.6)

where N is a total number of cells per unit volume.
The mass conservation law for P,Q,D in

                                                                                                                  (1.7)

                                                                                                                  (1.8)

                                                                                                                   (1.9)
where  t  and t are the positive constants.1 2 

We take the boundary conditions for s to be

σ=θk on ∂W(t),t>0                                                                          (1.10)

                                                                                                             (1.11)

and the initial data

where W(0) is given, θ is the surface tension, k is the mean curvature 
of the tumor surface    is the derivatives in the direction n of the 
outward normal, and Vn is the velocity of the free boundary�¶W(t) in 
the direction n.

Equation (1.10) is based on the assumption that the pressure�s�on 
the surface of the tumor is proportional to the surface tension and 
(1.11) is a standard kinetic condition.

In this article, we consider spherically symmetric solution for the 
[2]system  (1.1) – (1.12).

It is clear that, under the condition of spherical symmetry, for given V � 
and R(t),σ we easily solved from (1.5) and (1.10).

It is obvious that from (1.7)-(1.9), we get the following equation for v � 
By applying the L  theory of parabolic equations, the characteristic p

theory of hyperbolic equations and the Banach �xed point theorem, 
we prove that there exists a unique local solution of (1.1) – (1.12). If 
we make an addition to (1.7) – (1.9), then we get the following 
equation for     .

                                                                                                               (1.13)

Conversely, from (1.13) and (1.7)-(1.9) we have

                                                                                                           (1.14)

By uniqueness, we deduce that (1.6) is equivalent to (1.13) and we 
use (1.13) instead of (1.6).
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[1] In this article the model (1.1) – (1.12) is a three-dimensional model. 
[6]Consider the well-posedness of this problem  under the case where 

the initial data and the solution are spherically symmetric. Hence, C, 
W, P, Q and D are spherically symmetric in the space variable, let r = 
|x|, we denote

[10] We also assume that there is a scalar function

since s is spherically symmetric in the space variable, as mentioned 
before, we eliminate the pressure  and derive the model (1.1) – (1.12) 
as:

                                                                                                                      (1.15)

                                                                                                                      (1.16)

                                                                                                                      (1.17)

                                                                                                                       (1.18

                                                                                                                       (1.19)

where

                                                                                                                       (2.1)

SECTION-2 REFORMULATION OF THE PROBLEM

To transform the varying domain                                                           into
a �xed domain, assume (R,C,W,P,Q,D)  is a solution of  (1.15)-(1.27) 
and R(t)>0 (t≥0), and make the change of variables,

then the free boundary problem (1.15)  (1.27) is transformed into the 
initial-boundary value problem[2] on the �xed domain 
{(τ,ρ):0≤ρ≤1,τ≥0}

                                                                                                                       (2.2)

                                                                                                                       (2.3)

                                                                                                                       (2.4)

                                                                                                                       (2.5)

                                                                                                                       (2.6)

 
                                                                                                                        (2.7)                                                                                                                    
 
                                                                                                                        (2.8)

                                                                                                                       (2.9)

 
                                                                                                                     (2.10)

                                                                                                                     (2.11)
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                                                                                                                     (2.12)

                                                                                                                     (2.13)

                                                                                                                     (2.14)

                                                                                                                    (2.15) 

                                                                                                                      (2.16)
                                                                                                                   
Conversely, if (h,c,w,p,q,d,u) is a solution of (2.2)-(2.16) such that 
h(τ)>0 for τ≥0, then by making the change of variables 

Lemma 2.1:
Under the change of variables (2.1) or its inverse (2.17), the free 
boundary problem (1.15) – (1.27) is equivalent to initial-boundary 
value problem (2.2) – (2.16).

Remark 2.2:                                                    
From (2.12), 

Then using (2.14)-(2.18), 

We cannot expect the solution of (2.2) – (2.16) exists for all    0, but 
since we make the change of variables,

                                                one we can prove the solution of(2.2)-
(2.16) exists actually for all t�³ 0.

SECTION -3 EXISTENCE OF A LOCAL SOLUTION
From the assumptions (A1)-(A4) in sec.1 and transformation (2.1) in 
sce.2
we verify the following conditions hold: 

1 (B1) f, g and h are C  – smooth functions;
1(B2) gij (i,j=1,2,3) are C  – smooth functions;

1 (B3)  p_0,q_0 and d_0 are C – smooth functions;
(B4)  c (|x|)  , w  (|x|)∈Dp(B ) for some p>5. o 0 1

[5]We shall prove the local existence and uniqueness of solution  to 
(2.2)-(2.16) by using Banach �xed point theorem. Let, 

Now given T>0 ,we introduce a metric space (XT,d) as 

satisfying the following conditions (C1)-(C4)

The metric d in XT  is de�ned by 

It is easy to see (X ,d) is a complete metric space.T

Given any (h,c,w,p,q,d)∈ X , setT

Consider the following problem for 
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for 

for

for 0≤ρ≤1,0<τ≤T

We de�ne a mapping

Next to prove that F is a contraction mapping from                provided
T is sufficiently small.  

STEP 1:   
F maps X  into itself. It is obvious that (4.1)-(4.2) has a unique solutionT

                       
                     and

(                                                                                                                 3.13)

From the fact that 

                                   and                                         then  

                                                                      for 
 
So if  T is sufficiently small such that exp

                         that implies �h�satis�es the condition (C1). Next we 
consider (3.3)-(3.5) and (3.6)-(3.8).

Since c  (|x|), w  (|x|)∈Dp(B ) for some             (3.3)-(3.5) and (3.6)-(3.8) 0 0 1

has a                                       unique solution  and

respectively. According  to  the  embedding theorem,

where                       then                                         

                              By applying the maximum principle                     and  

                      Furthermore, by (3.4), the embedding,

With                      then                                                   From above results, 

we know  c s̃atis�es the condition (C2) and  w  ̃ satis�es the condition 

(C3). Finally we consider (4.9)-(4.12). Since

are continuously differentiable , then from Lemma 3.3 we obtain that 
if we take T small enough, (3.9)-(3.12) has a unique classical solution                                                  

satisfying  

                                                                                                                      (3.15)

Furthermore, if T is small enough,                                          for  

                                         where                                There implies p �,q �, and d 
� satisfy the condition (C4). 

Now for a sufficiently small T,   F:→X →X  is well de�ned.T T  

To obtain the desired result we need to prove F:→X →X  is a T T

contraction mapping if T is further small enough.

STEP 2:

Let                                                                   set 

From                                                                                                        and 

                                      easily calculate

(3.17)  

Then by (3.13)                                                                                        (3.18)

Next, let                                  and                                      we have 

for                                                                                                         (3.19)
 
                                              for                                                               (3.20) 

                             for

for                                                                                                               (3.22)

                                                     for                                                          (3.24)

where 

As for c ,̃   we know                                 and 

maximum principle note that f is continuously differentiable and 

                      are bounded ,so we can deduce that
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Similarly for w ,̃ we obtain 

Again we obtain

Finally , letting p ̃*=p ̃ -p ̃  , q *̃=q ̃ -q ̃ ,  d *̃=d ̃ -d ̃ , then result is 1 2 1 2 1 2

                                                                                                                             

for

for 

                                                                           for  0≤ρ≤1                     (3.32)

where

and                                                          From (3.15)-(3.16) we know that 

and since gij (i,j=1,2,3) are continuously differentiable , we deduce 
that

                                It is easy to see λ_ij (i,j=1,2,3) are bounded by a 
constant independent of the choice of (hi,c_i,p_i,q_i,d_i ) so from 
(3.33) we have 

                                                                                                                    (3.34)

By (3.16),(3.26).(3.28) and (3.34)

then F is a contraction mapping from X   into X .T T

According to Banach �xed point theorem, if T is small enough then F 
has a unique �xed point (h,������������������������� for���������                   By the 
de�nition of the mapping F (, c, w, p, q, d) is the unique solution of 
the problem (2.2) – (2.16) for for  0 £�t�£�T

THEOREM 4.1:
Under the assumptions (A1)�- (A4) and initial condition (1.30), the 
free boundary problem (1.15)-(1.27) has a unique solution 
(R,C,W,P,Q,D) for all 

1 2,1 R 1In addition, for any T>0, R(t)∈C  [0,T],C,W∈W  (Q  ) and P,Q,D∈C  P T
R(Q  ) T

Furthermore, the following estimates hold:

there exists T > 0 depending only on 

such that the problem (2.2)-(2.16) has a unique solution for 0 £�t�£ T.
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