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In last decade, we have witnessed a burst of data in all fields. Mining the patterns and reducing the dimensionality of the 
data space is of particular value. In previous studies, the Principal Component Analysis method is frequently employed 
in dimension reduction and feature extraction. In this study, we propose a novel feature extraction method. This method 

integrates the concept of space rotation and optimization theory.  By a number of iterations of space rotation, the information that is useful 
for classification is accumulated to the first several dimensions. A comprehensive experiment on 14 datasets and 3 classification algorithms 
demonstrate that the proposed algorithm is superior to the Principal Component Analysis method.
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INTRODUCTION 
In the last decade, we have witnessed a burst of data accumulated by 
Internet enterprises, government and research institutions. Mining 
the hidden patterns and knowledge from massive disordered data 
has received more and more attention. Among the field of data min-
ing and machine learning, feature extraction, which transforms origi-
nal data from a high dimensional feature space to a low dimensional 
feature space while retaining the useful information, is of particular 
importance. In previous studies, Principal Component Analysis (PCA) 
is widely employed for feature extraction. The PCA method rotates 
the original data space such that the axes of the new coordinate sys-
tem point into the directions of highest variance of the data. How-
ever, the variance of data has clear limitations and is not suitable for 
classification problems. To this end, we have proposed a new method 
for feature extraction that is based on optimization theory.

METHODS
Rotation matrix
In a two dimensional space, a rotation matrix is written as

While in the case of n-dimensional feature space, the rotation matrix 
is more complex. It is written as , where

 
where the first locates at the intersection of the i-th row and j-th col-
umn.

Optimization method
Denote  is the input feature space and ，. For the calculation of a 
hyper-plan that distinguishes samples of different classes, we need 
to solve the following problem:

If the sam-
ples of the two classes cannot be cleanly classified, we introduce the 
soft variables,

Therefore, the optimization problem is transformed to：

By employing the Lagrange Multiplier, we can calculate a hyper-plan 
for problem (3).

Feature extraction algorithm
The proposed algorithm consists of the following 6 steps：
1.  Solve problem (3) and calculate the hyper-plan P

n
 by using the 

complete feature space. The normal vector of P
n
 is denoted as 

W
n.

2.  Calculate the rotation matrix  based on W
n. 

3.  Perform the second step for n-1 times and calculate the rotation 
matrix . Multiply the rotation matrixes calculated in the second 
and third steps to the feature space. 

4.  Through the rotation process, the 2nd to the last dimensions of 
W

n 
are transferred to 0. In other words, W

n 
parallels to the x-axis.

5.  In the rotated feature space, remove the first dimension and the 
remaining n-1 features constitute a new feature space W

n-1.
6.  If the dimension of the new feature space is greater than 1, go 

to step 1; otherwise, the algorithm is finished.

EXPERIMENT SETUP
The datasets used in this study come from the standard UCI database. 
We strictly follow the 10 folds cross validation protocol. We have also 
performed data preprocessing as follows.

Samples with missing values
Some samples in the UCI datasets are with missing values. These sam-
ples are removed from the datasets in our experiments. A dataset is 
retained if it contains at least 200 valid samples.

Samples with discrete values
The optimization method needs numerical inputs and cannot process 
discrete values. Hence, the discrete values in the original datasets 
need to be processed. If a feature contains n different discrete values, 
we transform the discrete value into a n-dimensional vector. For in-
stance, the i-th discrete value is represented as (0, 0, …, 1, 0,…, 0), 
where the i-th value of the vector is 1 and the remaining values are 0.

Data normalization
As data normalization can speed up the coverage of gradient descent 
algorithm and improve the performance of classification algorithms, 
we have performed data normalization on our datasets. All feature 
values are transferred to 0.1~1.0 by the following method:
•	  Denote the maximal value of a feature as , the minimal value of 

a feature as , the value before normalization as , and the value 
after normalization as .

•	  The transformation between  and  is：
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•	
 

Setup for classifiers
We choose three distinct classifiers for the evaluation of our method, 
including NaïveBayes, Kstar and DecisionStump. The basic concept of 
the three classifiers is given as follows:

NaïveBayes is a classification algorithm based on the Bayes’ theo-
rem. It assumes that all features are independent.

Kstar is a classification algorithm based on Euclidian distance. A sam-
ple with unknown class label is determined by the k closest samples 
that have been assigned with class labels.

DecisionStump is a classification method that is similar to Decision 
tree. The difference is that Decision tree contains multiple layers while 
DecisionStump contains only one layer.

The three classifiers were run with default parameters and on three 
different feature space:

The original feature space: Features are the same as the UCI data-
base. No feature selection or extraction is performed.

Feature space extracted by PCA: We employ the PCA algorithm 
on the original feature space and the algorithm generates a new fea-
ture space.

Table 1. Prediction accuracy of DecisionStump on three 
distinct feature spaces.

Dataset
DecisionStump
Original feature 
space 

PCA feature 
space

Rotation matrix 
feature space

credit-g 70.00% 70.00% 72.20%
clean1 58.12% 60.70% 96.18%
breast-w 66.37% 57.65% 73.55%
house-
votes-84 69.39% 73.30% 72.96%

kr-vs-kp 90.93% 96.36% 97.37%
breast-
cancer 86.35% 84.68% 84.81%

diabetes 71.62% 69.67% 72.78%
credit-a 71.85% 67.78% 84.07%
heart-
statlog 96.93% 87.87% 93.49%

vote 82.38% 83.49% 87.56%
mushroom 89.90% 85.29% 97.51%
sonar 71.31% 66.71% 63.68%
ionosphere 69.95% 62.30% 98.32%
tic-tac-toe 96.93% 87.87% 93.49%

Figure1. Prediction accuracies of NaiveBayes, Kstar and Decision-
Stump algorithms on three distinct feature spaces: the original data 
space, the PCA feature space and the feature space generated by this 
method.

eature space extracted by the rotational matrix algorithm: 
We employ the rotational matrix algorithm (proposed in this paper) 
on the original feature space and the algorithm generates a new fea-
ture space.

RESULTS
The NaiveBayes, Kstar and DecisionStump algorithms are run in three 
distinct feature spaces. Prediction accuracy is used to evaluate the 
performance.

The results of DecisionStump are given in Table 1. For 12 out of 14 
datasets, the DecisionStump algorithm achieves higher prediction 
accuracy on the rotation matrix feature space than on the PCA fea-
ture space. For 10 out of 14 datasets, the DecisionStump algorithm 
achieves higher prediction accuracy on the rotation matrix feature 
space than on the original feature space. On average, when the De-
cisionStump algorithm is employed, the prediction accuracy on the 
rotation matrix feature space is 85%. To compare, the prediction accu-
racies are 78% and 75% on the original feature space and PCA feature 
space respectively, see Figure 1. 

Similar trends are observed for Kstar and NaiveBayes algorithms. For 
11 out of 14 datasets, the Kstar algorithm achieves higher prediction 
accuracy on the rotation matrix feature space than on the PCA feature 
space. For 12 out of 14 datasets, the Kstar algorithm achieves higher 
prediction accuracy on the rotation matrix feature space than on the 
original feature space. On average, when the Kstar algorithm is em-
ployed, the prediction accuracy on the rotation matrix feature space is 
85%. To compare, the prediction accuracies are 81% and 79% on the 
original feature space and PCA feature space respectively, see Figure 
1. Similarly, for all 14 datasets, the NaiveBayes algorithm achieves 
higher prediction accuracy on the rotation matrix feature space than 
on the PCA feature space. For 12 out of 14 datasets, the NaiveBayes 
algorithm achieves higher prediction accuracy on the rotation matrix 
feature space than on the original feature space. On average, when 
the NaiveBayes algorithm is employed, the prediction accuracy on the 
rotation matrix feature space is 85%. To compare, the prediction accu-
racies are 71% and 78% on the original feature space and PCA feature 
space respectively, see Figure 1.

CONCLUSIONS
This study proposes a feature extraction method that integrates the 
rotation matrix technique and the optimization theory. Compre-
hensive experiments on 14 datasets and 3 classification algorithms 
demonstrate that the proposed rotation matrix feature space is supe-
rior to the original feature space and the PCA feature space.
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